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since rotations in the (1-2) plane and in the (3-4) plane are like gangsters operating on different
turfs. Next, we tackle [J(23), J(31)]. Notice that the action takes place entirely in the SO(3)
subgroup of SO(4), and so we already know the answer: [J(23), J(31)] = [Jx, Jy] = iJz = iJ(12).
These two examples, together with antisymmetry J(mn) = −J(nm), in fact take care of all possible
cases. In the commutator [J(mn), J(pq)], there are three possibilities for the index sets (mn) and
(pq): (i) they have no integer in common, (ii) they have one integer in common, or (iii) they
have two integers in common. The commutator vanishes in cases (i) and (iii), for trivial (but
different) reasons. In case (ii), suppose m = p with no loss of generality, then the commutator is
equal to iJ(nq).

We obtain, for any N ,

[J(mn), J(pq)] = i(δmpJ(nq) + δnqJ(mp) − δnpJ(mq) − δmqJ(np)) (10.26)

This may look rather involved to the uninitiated, but in fact it simply states in mathematical
symbols the last three sentences of the preceding paragraph. First, on the right-hand side, a
linear combination of the Js (as required by the general argument above) is completely fixed
by the first term by noting that the left-hand side is antisymmetric under three separate inter-
changes: m↔ n, p↔ q, and (mn) ↔ (pq). Next, all those Kronecker deltas just say that if the
two sets (mn) and (pq) have no integer in common, then the commutator vanishes. If they do
have an integer in common, simply “cross off” that integer. For example, [J(12), J(14)] = iJ(24)
and [J(23), J(31)] = −iJ(21) = iJ(12).

10.2 Lie Algebra of SO(3) and Ladder Operators: Creation and
Annihilation (A trimmed copy of (IV.2 of GTNFP))

In this section we will consider higher dimensional representations of S0(3) and then look into
how to find its irreducible representations. This should, similarly to the previous section, feel
very familiar. You were essentially already shown how to do this when you were first introduced
to quantum angular momentum! However, walking through this carefully will give us the tools
we need in the next section to tackle the irreducible representations of tensor product reps of
SO(3) more carefully (i.e., re-study the additional of angular momentum).

10.2.1 Ladder operators are useful (a recap of stuff you’ve seen before)

Since the three generators Jx, Jy, and Jz do not commute, they cannot be simultaneously di-
agonalized, as explained in the review of linear algebra. But we can diagonalize one of them.
Choose Jz, and work in a basis in which Jz is diagonal.

The move that breaks the problem wide open should be very familiar to you: it is akin to going
from the 2-dimensional coordinates x, y to the complex variable z = x + iy, z∗ = x − iy, and from
a transversely polarized electromagnetic wave to a circularly polarized electromagnetic wave.
Define J± ≡ Jx ± iJy. Then we can rewrite (10.20) as

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (10.27)

Write the eigenvector of Jz with eigenvalue m as ∣m⟩; in other words,

Jz ∣m⟩ =m∣m⟩. (10.28)
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Since Jz is hermitean, m is a real number. What we are doing is going to a basis in which Jz
is diagonal; according to (10.27), J± cannot be diagonal in this basis. Now consider the state
J+∣m⟩ and act on it with Jz:

JzJ+∣m⟩ = (J+Jz + [Jz, J+])∣m⟩ = (J+Jz + J+)∣m⟩ = (m + 1)J+∣m⟩, (10.29)

where the second equality follows from (10.27). (Henceforth, we will be using (10.27) repeatedly
without bothering to refer to it.)

Thus, J+∣m⟩ is an eigenvector (or eigenstate; these terms are used interchangeably) of Jz with
eigenvalue m + 1. Hence, by the definition of ∣m⟩, the state J+∣m⟩ must be equal to the state
∣m + 1⟩ multiplied by some normalization constant; in other words, we have

J+∣m⟩ = cm+1∣m + 1⟩, (10.30)

with the complex number cm+1 to be determined. Similarly,

JzJ−∣m⟩ = (J−Jz + [Jz, J−])∣m⟩ = (J−Jz − J−)∣m⟩ = (m − 1)J−∣m⟩, (10.31)

from which we conclude that
J−∣m⟩ = bm−1∣m − 1⟩, (10.32)

with some other unknown normalization constant.

It is very helpful to think of the states ⋯, ∣m − 1⟩, ∣m⟩, ∣m + 1⟩,⋯ as corresponding to rungs on a
ladder. The result J+∣m⟩ = cm+1∣m + 1⟩ tells us that we can think of J+ as a "raising operator"
that enables us to climb up one rung on the ladder, going from ∣m⟩ to ∣m + 1⟩. Similarly, the
result J−∣m⟩ = bm−1∣m − 1⟩ tells us to think of J− as a "lowering operator" that enables us to
climb down one rung on the ladder. Collectively, J± are referred to as ladder operators.

To relate bm to cm, we invoke the hermiticity of Jx, Jy, and Jz, which implies that

(J+)† = (Jx + iJy)† = Jx − iJy = J−.

Multiplying J+∣m⟩ = cm+1∣m+1⟩ from the left by ⟨m+1∣ and normalizing the states by ⟨m∣m⟩ = 1,
we obtain

⟨m + 1∣J+∣m⟩ = cm+1.

Complex conjugating this gives us c∗m+1 = ⟨m∣J−∣m + 1⟩ = bm, that is, bm−1 = c∗m, so that we can
write

J−∣m⟩ = c∗m∣m − 1⟩.

Acting on this with J+ gives

J+J−∣m⟩ = c∗mJ+∣m − 1⟩ = ∣cm∣2∣m⟩.

Similarly, acting with J−J+ on ∣m⟩ gives

J−J+∣m⟩ = cm+1∣m + 1⟩ Ô⇒ ∣cm+1∣2∣m⟩.

Since we know that the representation is finite dimensional, the ladder must terminate, that is,
there must be a top rung. So, call the maximum value of m by j. At this stage, all we know is
that j is a real number. (Note that we have not assumed that m is an integer.) Thus, there is
a state ∣j⟩ such that J+∣j⟩ = 0. It corresponds to the top rung of the ladder.
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At this point, we have only used the first part of (10.27). Now we use the second half:

⟨j∣J+J−∣j⟩ = ⟨j∣J−J+ − 2Jz ∣j⟩ = ∣cj ∣2 − 2j,

thus determining ∣cj ∣2 = 2j. Furthermore,

⟨m∣J+J−∣m⟩ = ⟨m∣(J+J− − J−J+)∣m⟩ = ∣cm∣2 − ∣cm+1∣2 = 2m.

We obtain a recursion relation
∣cm∣2 = ∣cm+1∣2 + 2m,

which, together with ∣cj ∣2 = 2j, allows us to determine the unknown ∣cm∣. Here we go:

∣cj−1∣2 = ∣cj ∣2 + 2(j − 1) = 2(2j − 1),

then
∣cj−2∣2 = ∣cj−1∣2 + 2(j − 2) = 2(3j − 1 − 2),

and eventually
∣cj−s∣2 = 2((s + 1)j −

s

∑
i=1
i).

Recall the Gauss formula ∑si=1 i = 1
2s(s + 1), and obtain

∣cj−s∣2 = 2((s + 1)j − 1
2
s(s + 1)) = (s + 1)(2j − s).

We keep climbing down the ladder, increasing s by 1 at each step. When s = 2j, we see that c−j
vanishes. We have reached the bottom of the ladder. More explicitly, we have

J−∣ − j⟩ = c∗−j ∣ − j − 1⟩ = 0,

according to what we just derived. The minimum value of m is −j. Since s counts the number
of rungs climbed down, it is necessarily an integer, and thus the condition s = 2j that the ladder
terminates implies that j is either an integer or a half-integer, depending on whether s is even
or odd. If the ladder terminates, then we have the set of states ∣ − j⟩, ∣ − j + 1⟩, . . . , ∣j − 1⟩, ∣j⟩,
which totals 2j + 1 states.

For example, for j = 2, these states are ∣ − 2⟩, ∣ − 1⟩, ∣0⟩, ∣1⟩, ∣2⟩. Starting from ∣2⟩, we apply J−
four times to reach ∣ − 2⟩. (We will do this explicitly later in this chapter.) To emphasize the
dependence on j, we sometimes write the kets ∣m⟩ as ∣j,m⟩. Notice that the ladder is sym-
metric under ∣m⟩ → ∣ −m⟩, a symmetry that can be traced to the invariance of the algebra in
(10.20) under Jx → Jx, Jy → −Jy, and Jz → −Jz (namely, a rotation through π around the x-axis).

Mysterious Appearance of the Half-Integers. But what about the representations of
the algebra corresponding to j = a half-integer? For example, for j = 1

2 , we have a 2 ⋅ 1
2 + 1 = 2-

dimensional representation consisting of the states ∣−1
2⟩ and ∣12⟩. We climb down from ∣12⟩ to ∣−1

2⟩
in one step. Certainly no sight of a 2-dimensional representation in chapter I.3! The mystery of
the j = 1

2 representation will be resolved in chapter IV.5 when we discuss SU(2), but let’s not
be coy about it and keep the reader in suspense. I trust that most readers have heard that it
describes the electron spin. We did not go looking for the peculiar number, it came looking for us.
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It should not escape your notice that as a by-product of requiring the ladder to terminate, we
have also determined ∣cm∣2. Indeed, setting s = j−m, we had ∣cm∣2 = (j+m)(j−m+1). Recalling
the definition of cm, we obtain

J+∣m⟩ = cm+1∣m + 1⟩ =
√
(j + 1 +m)(j −m)∣m + 1⟩. (10.33)

and
J−∣m⟩ = c∗m∣m − 1⟩ =

√
(j + 1 −m)(j +m)∣m − 1⟩. (10.34)

As a mild check on the arithmetic, indeed J+∣j⟩ = 0 and J−∣−j⟩ = 0. You might also have noticed
that, quite rightly, the phase of cm is not determined, since it is completely up to us to choose
the relative phase of the kets ∣m⟩ and ∣m − 1⟩. Beware that different authors choose differently.
I simply take cm to be real and positive. Tables of the cms for various js are available, but it’s
easy enough to write them down when needed. Note also that the square roots in (10.33) and
(10.34) are related by m↔ −m.

Example of ladder operators. For convenience, let’s list here the two most common cases
needed in physics. For j = 1

2 :

J+ ∣−
1
2
⟩ = ∣1

2
⟩ , J− ∣

1
2
⟩ = ∣−1

2
⟩ . (10.35)

For j = 1:
J+∣ − 1⟩ =

√
2∣0⟩, J+∣0⟩ =

√
2∣1⟩, J−∣1⟩ =

√
2∣0⟩, J−∣0⟩ =

√
2∣ − 1⟩. (10.36)

Note that the (nonzero) cm for these two cases are particularly easy to remember (that is, if for
some odd reason you want to): they are all 1 in one case, and

√
2 in the other. Let us also write

down the j = 2 case for later use:

J+∣ − 2⟩ =
√

2∣ − 1⟩, J+∣ − 1⟩ =
√

6∣0⟩, J+∣0⟩ =
√

6∣1⟩, J+∣1⟩ =
√

2∣2⟩,
J−∣2⟩ =

√
2∣1⟩, J−∣1⟩ =

√
6∣0⟩, J−∣0⟩ =

√
6∣ − 1⟩, J−∣ − 1⟩ =

√
2∣ − 2⟩.

(10.37)

So you did all of this before in QP1 and might be wondering what is new so what have you learnt
from this? We’ll we’ve implicitly figured out how to write J+ and J−, and thereby also J+ and J−
in a 2j + 1 dimensional basis working only from the known commutation relationships between
Jx, Jy and Jz. Or, in group theoretic language, from the structure constants that define the Lie
Algebra of 3D rotations, SO(3), we have computed a 2j + 1 dimensional representation of the
SO(3) Lie algebra.

10.3 Addition of Angular Momentum (e.g. multiplying SO(3)
representations)

This is Section IV.3, pg. 217 of GTNFP. Note both here and earlier I have chosen to skip
constructing high dimensional representations, and finding their irreps, via tensors in favour of
a more familiar ladder operator (i.e., lie algebraic) approach. But if you’re interested and have
time do go and read those bits from GTNFP.

In the prototypical quantum mechanical problem, two particles orbit in a spherically symmetric
potential. Particle unprime could be in the state ∣l,m⟩, and particle prime in the state ∣l′,m′⟩. If
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the particles do not interact, then the eigenstates of the Hamiltonian could be written using the
product states ∣l,m⟩⊗∣l′,m′⟩. But the particles do interact with each other, and the Hamiltonian
H then includes an interaction term HI (which we take to depend only on the distance between
the two particles). To leave H invariant, we would have to rotate both particles, of course. We
want to understand what group theory tells us about the wave function of the two particles.

But the mathematical problem involved corresponds to breaking the tensor product of two
representations of SO(3) down into its irreducible representations. Suppose we are given two
irreducible representations of the Lie algebra of SO(3), labeled by j and j′. We have two sets
of kets: ∣j,m⟩ with m = −j,−j + 1,⋯, j − 1, j, and ∣j′,m′⟩ with m′ = −j′,−j′ + 1,⋯, j′ − 1, j′. The
2j + 1 kets ∣j,m⟩, when acted on by the generators Ji, transform into linear combinations of
one another. Similarly, the 2j′ + 1 kets ∣j′,m′⟩, when acted on by the generators Ji, transform
into linear combinations of one another. Now we write down the product kets ∣j,m⟩ ⊗ ∣j′,m′⟩.
There are (2j +1)(2j′+1) such states. When acted on by the generators Ji, these kets naturally
transform into linear combinations of one another, thus furnishing a (2j+1)(2j′+1)-dimensional
representation of SO(3). We expect this representation to be reducible.

The concept of irreducibility transfers naturally from representations of a Lie group to the
representations of a Lie algebra. If the matrices representing the Jis could be block diagonalized,
we say that the representation is reducible. When the generators Ji act on the product kets
∣j,m⟩ ⊗ ∣j′,m′⟩, they act on ∣j,m⟩ and then on ∣j′,m′⟩. We can verify this more-or-less self-
evident fact by rotating the product kets. Under an infinitesimal rotation around the z-axis,
R ≃ I + iθJz, both ∣j,m⟩ and ∣j′,m′⟩ rotate, of course. Thus,

∣j,m⟩ ⊗ ∣j′,m′⟩ → R∣j,m⟩ ⊗R∣j′,m′⟩
≃ (I + iθJz)∣j,m⟩ ⊗ (I + iθJz)∣j′,m′⟩
= (I + iθm)∣j,m⟩ ⊗ (I + iθm′)∣j′,m′⟩
≃ (I + iθ(m +m′))∣j,m⟩ ⊗ ∣j′,m′⟩ + O(θ2).

In other words,

Jz(∣j,m⟩ ⊗ ∣j′,m′⟩) = (Jz ∣j,m⟩) ⊗ ∣j′,m′⟩ + ∣j,m⟩ ⊗ (Jz ∣j′,m′⟩), (10.38)

or equivalently,
Jz ∣j,m⟩ ⊗ ∣j′,m′⟩ = (m +m′)∣j,m⟩ ⊗ ∣j′,m′⟩. (10.39)

The operator Jz acts in turn on ∣j,m⟩ and ∣j′,m′⟩. Thus, ∣j,m⟩ ⊗ ∣j′,m′⟩ is an eigenstate of Jz
with eigenvalue m +m′. The eigenvalues of Jz simply add.

To avoid writing ⊗ constantly, we denote ∣j,m⟩ ⊗ ∣j′,m′⟩ by ∣j, j′,m,m′⟩. We just learned that
∣j, j′,m,m′⟩ is an eigenstate of Jz with eigenvalue m +m′. We know that the maximum values
m and m′ can attain are j and j′, respectively, and thus the maximum eigenvalue Jz can have
is j + j′, attained with the state ∣j, j′, j, j′⟩.

10.3.1 The Clebsch-Gordan decomposition (examinable!)

The plan of attack is to apply the lowering operator J− repeatedly on ∣j, j′, j, j′⟩. To see what
is going on, let’s go through some examples.

Example (A): j = 1
2 , j
′ = 1

2

There are (2j + 1)(2j′ + 1) = 2 ⋅ 2 = 4 states ∣12 ,
1
2 ,m,m

′⟩ with m = −1
2 ,

1
2 and m′ = −1

2 ,
1
2 . Since j

and j′ are fixed in this discussion, we might as well omit them and simply write ∣m,m′⟩ instead
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of ∣j, j′,m,m′⟩. Let’s go slow and list the four states:

∣1
2
,
1
2
⟩ , ∣1

2
,−1

2
⟩ , ∣−1

2
,
1
2
⟩ , ∣−1

2
,−1

2
⟩ .

As explained above, we expect these four states to furnish a reducible representation and thus
to fall apart into a bunch of irreducible representations labeled by J . Let us denote the states
in these irreducible representations by ∣J,M⟩ with M = −J,−J + 1, . . . , J .

Of these four states, ∣12 ,
1
2⟩ has the maximum eigenvalue Jz can have, namely, 1

2 +
1
2 = 1. Thus,

it can belong only to an irreducible representation labeled by J with J ≥ 1. In fact, it cannot
be that J > 1, because then there would have to be states with eigenvalue of Jz greater than 1.
So we have

∣1,1⟩ = ∣1
2
,
1
2
⟩ . (10.40)

The strategy is to climb down the ladder by applying J− repeatedly. So, act with J− on ∣1,1⟩ =
∣12 ,

1
2⟩. But we know from chapter IV.2 how J− acts on these states. Using Eq. (10.36), we have

J−∣1,1⟩ =
√

2∣1,0⟩, (10.41)

while using Eq. (10.35), we have

J− ∣
1
2
,
1
2
⟩ = 1√

2
(∣−1

2
,
1
2
⟩ + ∣1

2
,−1

2
⟩) . (10.42)

Thus,
∣1,0⟩ = 1√

2
(∣−1

2
,
1
2
⟩ + ∣1

2
,−1

2
⟩) . (10.43)

Applying J− again, we obtain
√

2∣1,−1⟩ = 1√
2
(2 ∣−1

2
,−1

2
⟩) , (10.44)

and thus
∣1,−1⟩ = ∣−1

2
,−1

2
⟩ , (10.45)

which we might have expected by applying symmetry to our starting equation, flipping the
z-axis.

We have now accounted for three of the four states we started with. The only orthogonal state
left is the linear combination

1√
2
(∣−1

2
,
1
2
⟩ − ∣1

2
,−1

2
⟩) , (10.46)

which has eigenvalue 0 under Jz; this state, all by its lonesome self, must be

∣J = 0,M = 0⟩. (10.47)

Let me summarize our results, giving ∣J,M⟩ in terms of ∣m,m′⟩:

∣1,1⟩ = ∣1
2
,
1
2
⟩ , (10.48)

∣1,0⟩ = 1√
2
(∣−1

2
,
1
2
⟩ + ∣1

2
,−1

2
⟩) , (10.49)
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∣1,−1⟩ = ∣−1
2
,−1

2
⟩ , (10.50)

∣0,0⟩ = 1√
2
(∣−1

2
,
1
2
⟩ − ∣1

2
,−1

2
⟩) . (10.51)

Or, in more group theoretic language, we have just shown that

1
2
⊗ 1

2
= 1⊕ 0. (10.52)

Example B:

Now that you have gone through example (A), we can practically race through this example.
Start with 3 ⋅3 = 9 states ∣1,1,m,m′⟩ with m = −1,0,1 and m′ = −1,0,1. Again, we write ∣m,m′⟩
instead of ∣j, j′,m,m′⟩. These nine states furnish a reducible representation which decomposes
into a bunch of irreducible representations labeled by J . In these irreducible representations,
the states are denoted by ∣J,M⟩ with M = −J,−J + 1, . . . , J .

Of these nine states, the one with the highest value of M is ∣1,1⟩, for which M = 1 + 1 = 2. So
start with

∣2,2⟩ = ∣1,1⟩. (10.53)

and climb down the ladder. Act with J−, using Eq. (10.37). But as remarked in connection with
example (A), we don’t even need to look these up. Remembering that ∣1,1⟩ means ∣1⟩ ⊗ ∣1⟩, we
lower each of the two kets in turn to ∣0⟩, so that we end up with a linear combination of ∣1,0⟩
and ∣0,1⟩. But by the principle of democracy, these two kets must appear with equal weight,
and thus

∣2,1⟩ = 1√
2
(∣1,0⟩ + ∣0,1⟩) . (10.54)

Onward! Apply J− again. Advocating democracy is not enough anymore, since this only tells
us that we get a state proportional to ∣ − 1,1⟩ + c∣0,0⟩ + ∣1,−1⟩ with an unknown constant c. We
have to invoke Eq. (10.37) to determine c = 2. Thus,

∣2,0⟩ = 1√
6
(∣ − 1,1⟩ + 2∣0,0⟩ + ∣1,−1⟩) . (10.55)

At this point we could keep going, but there is no need to even apply J− anymore. By reflection
symmetry along the z-axis, we have

∣2,−1⟩ = 1√
2
(∣0,−1⟩ + ∣ − 1,0⟩) , (10.56)

and
∣2,−2⟩ = ∣ − 1,−1⟩. (10.57)

These account for five out of the nine states. Of the remaining states, the maximum value M
can have is 1, attained by the states ∣0,1⟩ and ∣1,0⟩. But this state ∣J = 1,M = 1⟩ has to be
orthogonal to the state

∣2,1⟩ = 1√
2
(∣0,1⟩ + ∣1,0⟩) (10.58)

we already have. Thus, with essentially no work, we have found

∣1,1⟩ = 1√
2
(∣0,1⟩ − ∣1,0⟩) . (10.59)
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Again, apply J− on this, and by democracy, we obtain with no work at all

∣1,0⟩ = 1√
2
(∣ − 1,1⟩ − ∣1,−1⟩) , (10.60)

and then
∣1,−1⟩ = 1√

2
(∣ − 1,0⟩ − ∣0,−1⟩) . (10.61)

So now there is only 9 − 5 − 3 = 1 state left. This lone state is determined by the fact that it is
orthogonal to everybody else. Hence,

∣0,0⟩ = 1√
3
(∣ − 1,−1⟩ − ∣0,0⟩ + ∣1,1⟩) . (10.62)

Or, in more group theoretic language, have just shown that

1⊗ 1 = 2⊕ 1⊕ 0. (10.63)

General case

This procedure breaking down j ⊗ j′ into a direct sum of irreducible representations, i.e., to the
form

∣J,M⟩ =
j

∑
m=−j

j′

∑
m′=−j′

∣j, j′,m,m′⟩⟨j, j′,m,m′∣J,M⟩ , (10.64)

is known as the Clebsch-Gordan decomposition. The various coefficients that appear are known
as Clebsch-Gordan coefficients. For example, the numbers 1√

6 and
√

2
3 in

∣2,0⟩ = 1√
6
(∣ − 1,1⟩ + 2∣0,0⟩ + ∣1,−1⟩) . (10.65)

In other words, ∣J,M⟩ is a linear combination of ∣j, j′,m,m′⟩ with the Clebsch-Gordan coefficients
given by the numbers ⟨j, j′,m,m′∣J,M⟩. Since these vanish unless m +m′ =M , the double sum
in (10.64) reduces to a single sum.

10.3.2 Wigner-Eckert Theorem (Non-examinable)

Remember when we looked at time dependent perturbation theory we saw that transition rates
depended on terms of the form

⟨n∣V ∣i⟩ (10.66)
where V is a perturbation term to the Hamiltonian and ∣i⟩ and ∣n⟩ are some eigenstates of the
original Hamiltonian. In the context of atomic and molecular physics the perturbation is often
invariant under SO(3) and the initial and final states are often initially degenerate angular
momentum states, i.e., ∣i⟩ = ∣α, j,m⟩ and ∣n⟩ = ∣α′, j′,m′⟩ where α just represents generic other
quantum numbers that define the state. In this case, we can use Clebsch-Gordan coefficients to
simplify the computation of these terms and the theorem that allows us to do so is called the
Wigner-Eckart theorem.

Consider an operator V that transforms under the group SO(3). The Wigner-Eckart theorem
states that for a matrix element:

⟨α′, j′,m′∣VJM ∣α, j,m⟩ = (
j′ J j
m′ M −m ) ⟨α

′, j′∣∣VJ ∣∣α, j⟩, (10.67)
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where the first term is a Clebsch-Gordan coefficient and the second term, ⟨α′, j′∣∣VJ ∣∣α, j⟩, is the
reduced matrix element. The theorem indicates that the amplitude factors into a product of
two terms: one term encapsulating the group-theoretical properties of the problem (via Clebsch-
Gordan coefficients) and the other representing the dynamics, which is independent of m and
m′, and group theory cannot help us compute.

The selection rules for transitions under SO(3) symmetry emerge naturally from the Clebsch-
Gordan coefficients. In particular, the matrix element in (10.67) vanishes unless:

∆j = j′ − j ≤ J, ∆m =m′ −m =M ≤ J. (10.68)

These constraints explain why only specific transitions occur in atomic spectroscopy and why
others are forbidden. For a transition where the operator V transforms as a spherical harmonic
YM
J , the rules imply that:

• ∣j′ − j∣ ≤ J ensures the total angular momentum change aligns with the symmetry of the
operator.

• M =m′ −m dictates the projection of angular momentum change.

The intensity of an observed transition is proportional to the absolute square of the matrix
element:

Intensity∝ ∣⟨α′, j′,m′∣VJM ∣α, j,m⟩∣2, (10.69)

with forbidden transitions resulting from violations of the conditions in (10.68). This example
therefore highlights the deep role of group theory in determining physically observed phenomena.

I have included this example here to link back to our study of transition rates earlier on in the
course and as a taster of material that you will study in more detail in Jean Philippe Bruntut’s
atomic physics course next term. However, the Wigner Eckert theorem will be un-examinable
this year in QP2.

10.4 Other applications of Group Theory and Lie Algebras

To end, I just want to highlight that Lie Groups and Lie Algebras appear all over the place.
I’ve focussed on their application in angular momentum because this should be most familiar
given what you’ve seen before- and is important to understand in a lot of atomic and molecular
physics. But let me just name drop a few other applications and give you a few references as to
where you can read more about them. (This is, of course, all non-examinable.)

• Particle Physics. The most obvious area where you really need to understand Lie Groups
and Lie Algebras in Particle Physics. In fact, if you decide to focus on this in your master’s
you will start with a TPIV devoted to learning Lie Algebra for Particle physics via this
textbook.

• Controlling quantum systems. You’ve seen that Lie Algebras are all about figuring out
what Hermitian operators generate what unitary representations of a group... this means
you can use your understanding of Lie Algebras to figure out how to design Hamiltonians
to implement various unitaries on that systems, that is, how to control that system. This
is important if you are an theorist/experimentalist trying to build a quantum computer (or
other quantum technology). It is also important if you are a quantum software developer
trying to design certain quantum algorithms. For an introduction see this tutorial.
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https://pennylane.ai/qml/demos/tutorial_liealgebra


Quantum Physics II CHAPTER 10. LIE ALGEBRAS/ANGULAR MOMENTUM

• Machine Learning (Quantum and Classical) Why is symmetry important in machine
learning? This is explained very nicely in this blog post. Consider everyone’s favourite
example of a machine learning task: classifying images to decide if they include cats of
dogs. (If you want a less inane task consider trying to classify whether an images of
tumours contain cancerous cells. Or whether images of galaxies contain supernova.)

There are many different transformations one can perform to an image of a cat that still
leave it as a picture of a cat - e.g. you can rotate it or reflect it and you are still left with
an image of a cat (Fig. 10.1).

Figure 10.1: A picture of a rotated cat or flipped cat is still a picture of a cat.

We want our classifier to be invariant under these symmetry transformations. In the
context of image processing (or modelling molecules or materials) these symmetry trans-
formations will typically be geometric transformations. Beyond image classification other
symmetry transformations, such as permutation invariance, can become important. And,
of course, mathematically all these symmetry transformations can represented by the ac-
tions of elements of a symmetry group. The theory of Lie Algebras (and group/rep theory
more generally) provides us with a way of constructing models with these symmetries in
built. For more information on this take a look at my notes from last year, check out this
(quite technical) tutorial or this (less technical) tutorial.

• Classically simulating quantum systems. As we’ve discussed before, simulating quan-
tum systems classically is generally hard because it involves multiplying together expo-
nentially large matrices. But if your system as symmetries you can use clever tricks from
the theory of Lie Algebras and Lie Groups to make this easier. See this tutorial for more
information.
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https://maurice-weiler.gitlab.io/blog_post/cnn-book_1_equivariant_networks/
https://arxiv.org/abs/2210.07980
https://arxiv.org/abs/2210.07980
https://pennylane.ai/qml/demos/tutorial_geometric_qml
https://pennylane.ai/qml/demos/tutorial_liesim
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Figure 10.2: And let’s end with one more meme. I originally gave this the wooden spoon award
because my reaction, similarly to many of you I guess, was ‘is this even a meme?’. But having
now had it explained to me I have to concede its pretty clever. And if you don’t get it - that’s
just a healthy sign that you don’t spend too too much time online.
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